If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x-72=0
a = 4; b = 2; c = -72;
Δ = b2-4ac
Δ = 22-4·4·(-72)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-34}{2*4}=\frac{-36}{8} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+34}{2*4}=\frac{32}{8} =4 $
| x+34=82 | | 4x+30x+8=34 | | 0=4x^2+2x-72 | | (.1x-1/100)(.01x-1/10)=0 | | 3x+11=−13 | | 5*5x=60.5 | | X+180=y | | (8x+56)(x+11)=0 | | x/6=15/36 | | .3x(2/11x-8/11)=0 | | 4x+23/9=2x+14/6 | | 1/5x=15+4/5 | | 162=3r | | 1/5x=15=4/5 | | H=35t-4.9t^2 | | T=o+2 | | 13=-8x+9+5x-8 | | 0.25(x-4=1 | | x^2-2x^2-36x-72=0 | | A=n+6 | | 1.5y-6=-11 | | 0.4(x=3)=3.2 | | 1/2x-5=27 | | 5x=30x-4=72x-3=11 | | 75b2=3 | | X(x+9)=12^2 | | 158x=56 | | 4v/5=20 | | 3x-45=34x-4 | | 23-6x=47 | | 0,04(10-x)+0,3x=0,01 | | 12-12b=710710-94 |